Electron swarm parameters of SF<sub>6</sub> under time varying electric fields
نویسندگان
چکیده
منابع مشابه
Electron Swarm Parameters in Water Vapor
Electron swarm parameters, such as the drift velocity and the ionization coefficient, in water vapor have been measured for relatively wide ranges in reduced electric fields (E/N) at room temperature. The drift velocity (Wm) was obtained based upon the arrival-time spectra of electrons by using a double-shutter drift tube for the E/N from 60 to 1000 Td, while the first and second ionization coe...
متن کاملElectric double layer of anisotropic dielectric colloids under electric fields
Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculat...
متن کاملEffects of Statically Electric Fields on Freezing Parameters and Microstructures of Button Mushrooms (Agaricus bisporus)
Background and Objectives: Freezing under statically electric fields is one of the novel freezing methods to improve the quality of frozen products by controlling the nucleation process. The objective of this study was to investigate effects of freezing under electrostatic fields on the freezing parameters and microstructures of frozen button mushrooms. Materials and Methods: Mushroom samples w...
متن کاملTime Dependent Analysis of Micro-tubes Conveying Nanofluids Under Time-Varying Heat Flux
In this paper the numerical analysis of flow and time dependent heat transfer of micro-tube conveying nanofluid in laminar flow is investigated. In this study, convection heat transfer of nanofluid and base fluid and transient analysis for time-varying heat flux for time step of 0.0001 second are elucidated. It is observed that the pumping power of nanofluid flowing and the maximum temperatur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Power Engineering (IJAPE)
سال: 2020
ISSN: 2722-2624,2252-8792
DOI: 10.11591/ijape.v9.i1.pp6-11